import matplotlib.pyplot as plt import numpy as np from numpy.fft import fft, fftshift plt.clf() fs = 10 # sampling frequency dt = 1 / fs t = np.arange(0, 5, dt) # start, end, step y = np.cos(2 * np.pi * 1 * t) t1 = np.arange(0, 5, dt / 1000) # start, end, step y1 = np.cos(2 * np.pi * 9 * t1) N = len(y) fig, axs = plt.subplots(2, num=1) axs[0].plot(t, y, ':') axs[0].stem(t, y, '.') axs[0].set_xlabel('t [s]') axs[0].set_ylabel('y') axs[0].grid() axs[0].plot(t1, y1, 'r') Y = fftshift(fft(y) / N) df = fs / len(Y) f = np.arange(-fs / 2, fs / 2, df) axs[1].stem(f, np.abs(Y)) axs[1].set_xlabel('f [Hz]') axs[1].set_ylabel('Y abs') axs[1].grid() # axs[1].stem(f, Y.real) # axs[1].set_xlabel('f [Hz]') # axs[1].set_ylabel('Y real') # axs[1].grid() # axs[2].stem(f, Y.imag) # axs[2].set_xlabel('f [Hz]') # axs[2].set_ylabel('Y imag') # axs[2].grid() fig.show()